如图,在四棱锥$P-ABCD$中,平面$PAB\bot $平面$ABCD,AD$
的有关信息介绍如下:证明:$\left(1\right)\because PA=PB=$,$O$为$AB$中点,
证明:$\left(1\right)\because PA=PB=$,$O$为$AB$中点,
$\therefore PO\bot AB$
$\because $侧面$PAB\bot $底面$ABCD$,$PO\subset $侧面$PAB$,侧面$PAB\cap $底面$ABCD=AB$,
$\therefore PO\bot $底面$ABCD$
$\because CD\subset $底面$ABCD$,$\therefore PO\bot CD$
在$Rt\triangle OBC$中,$OC^{2}=OB^{2}+BC^{2}=2$
在$Rt\triangle OAD$中,$OD^{2}=OA^{2}+AD^{2}=1$
在直角梯形$ABCD$中,$CD^{2}=AB^{2}+\left(AD-BC\right)^{2}=8$
$\therefore OC^{2}+CD^{2}=OD^{2}$,
$\therefore \triangle ODC$是以$\angle OCD$为直角的直角三角形,
$\therefore OC\bot CD$
$\because OC$,$OP$是平面$POC$内的两条相交直线
$\therefore CD\bot $平面$POC\ldots (6$分)
(2)设三棱锥$O-PCD$的高为$h$,因为平面$PAB\bot $平面$ABCD,AD$∥$BC,\angle ABC=90^{\circ}$,$PA=PB=3$,$BC=1$,$AB=2$,$AD=3$,$O$是$AB$的中点.
所以$PO\bot $平面$ABCD$,$PO=2\sqrt{2}$,$OC=\sqrt{2}$,$OD=\sqrt{10}$,$PC=\sqrt{10}$,
由(1)得$OC\bot CD$,$CD\bot PC$,所以$CD=2\sqrt{2}$,
由$V_{P-OCD}=V_{O-PCD}$得$\dfrac{1}{3}\times S_{\triangle OCD}\times PO=\dfrac{1}{3}\times S_{\triangle PCD}h$,所以$\dfrac{1}{3}\times \dfrac{1}{2}\times OC\times OD\times OP=\dfrac{1}{3}\times \dfrac{1}{2}\times PC\times CDh$,即$\sqrt{2}\times \sqrt{10}\times 2\sqrt{2}=\sqrt{10}\times 2\sqrt{2}h$,解得$h=\sqrt{2}$;
所以三棱锥$O-PCD$的高$\sqrt{2}$.