如图,将矩形$ABCD$的四个角向内折起,恰好拼成一个无缝隙无重叠的长方形$EFGH$,若$EH=9$厘米,$EF=12$厘米,则边$AD$的长是______厘米.
的有关信息介绍如下:$\because $四边形$EFGH$为矩形.$\therefore HG$∥$EF$,$\therefore \angle GHF=\angle EFH$,又$\because \angle BFE=\angle EFH$,$\angle DHG=\angle GHF$,$\therefore \angle EFB=\angle DHG$,在$\triangle DHG$和$\triangle BEF$中$\left\{\begin{array}{l}{∠B=∠D}\\{∠BFE=∠DHG}\\{EF=HG}\end{array}\right.$,$\therefore \triangle DHG$≌$\triangle BEF\left(AAS\right)$,$\therefore HD=EF$,$\therefore MF=HD$,$\therefore AD=AH+HD=HM+MF=HF$,$\because \angle HEM=\angle AEH$,$\angle BEF=\angle FEM$,$\therefore \angle HEF=\angle HEM+\angle FEM=\frac{1}{2}\times 180^{\circ}=90^{\circ}$,$\therefore HF=\sqrt{E{H}^{2}+E{F}^{2}}=\sqrt{{9}^{2}+1{2}^{2}}=15(厘米)$,$\therefore AD=15(厘米)$,故答案为:$15$.