函数的值域的求法
的有关信息介绍如下:求函数值域的几种常见方法1.直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为r,值域为r;反比例函数的定义域为{x|x0},值域为{y|y0};二次函数的定义域为r,当a>0时,值域为{};当a<0时,值域为{}.例1.求下列函数的值域①y=3x+2(-1x1)②③④解:①∵-1x1,∴-33x3,∴-13x+25,即-1y5,∴值域是[-1,5]②∵∴即函数的值域是{y|y2}③④当x>0,∴=,当x<0时,=-∴值域是[2,+).(此法也称为配方法)函数的图芦毁像为:2.二次函数比区间上的值域(最值):例2求下列函数的最大值、最小值与值域:①;解:∵,∴顶点为(2,-3),顶点横坐标为2.①∵抛物线的开口向上,函数的定义域r,嫌中∴x=2时,ymin=-3,无最大值;函数的值域是{y|y-3}.②∵顶点横坐标2[3,4],当x=3时,y=-2;x=4时,y=1;∴在[3,4]上,=-2,=1;值域为[-2,1].③∵顶点横坐标2[0,1],当x=0时,y=1;x=1时,y=-2,∴在[0,1]上,=-2,=1;值域为[-2,1].④∵顶点横坐标2[0,5],当x=0时,y=1;x=2时,y=-3,x=5时,y=6,∴在[0,1]上,=-3,=6;值域为[-3,6].注:对于二次函数,⑴若定义域为r时,①当a>0时,则当时,其最小值;②当a<0时,则当时,其最大值.⑵若定义域为x[a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].①若[a,b],则是函数的最小值(a>0)时或最大值(a<0)时,再比较的大小决定函数的最大(小)值.②若[a,b],则[a,b]是在的单调区间内,只需比较的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两芹哗山端点的位置关系进行讨论.3.判别式法(△法):判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论例3.求函数的值域方法一:去分母得(y-1)+(y+5)x-6y-6=0①当y11时∵x?r∴△=(y+5)+4(y-1)×6(y+1)0由此得(5y+1)0检验时(代入①求根)∵2?定义域{x|x12且x13}∴再检验y=1代入①求得x=2∴y11综上所述,函数的值域为{y|y11且y1}方法二:把已知函数化为函数(x12)∵x=2时即说明:此法是利用方程思想来处理函数问题,一般称判别式法.判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.4.换元法例4.求函数的值域解:设则t0x=1-代入得5.分段函数例5.求函数y=|x+1|+|x-2|的值域.解法1:将函数化为分段函数形式:,画出它的图象(下图),由图象可知,函数的值域是{y|y3}.解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+].如图两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.