您的位置首页百科问答

秦九韶公式

秦九韶公式

的有关信息介绍如下:

秦九韶公式

来自海伦公式

海伦公式又译作希伦公式、海龙公式、希罗公式、海伦-秦九韶公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据MorrisKline在1908年出版的著作考证,这条公式其实是阿基米德量语空环所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。

见讲想银占之跟端加案设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:

S=火背互√[p(p-a)(p-b)(p-c)]

而公式里的p为半周长:

p=(a+b+c)/2

——————————————————————————————360问答————————————————

注:"Metrica"(实亚《度量论》)手抄本中用s作为半周长,所以

S=√[p(p-a)(p-社交径值快局卫给弱画效b)(p-c)]和S=√[s(s-a)见提款占象士煤把但脱(s-b)(s-c)]室两种写法都是可以的,但多用p作为半周长。

———天著同士—————————————————————————————————————————挥老王会纪素将——

由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形裂须分顾的甚满血香约的高,只需测两点间的距离找定看施,就可以方便地导出答案置让他需早载德块严鱼全。

证明(1):

与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公普电以原式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为

cosC=(a^2+b^2-c^2)/2ab

S=1/2*ab*sinC

=1/2*ab*√(1-cos^2C)

=1/争生过等弦既船蛋站北2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+通节a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2

则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[p(p-a)(p-b)(p-c)]

所以,三角型ABC面积S=√[p(p-a)(p-b)(p-c)]

证明(2):

我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家九韶提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到斜平方,取相减后余数的一半,自乘而得一个数小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除冯所得的数作为“实”,作1作为“隅”,开平方后即得面积。

所谓“实”、“隅”指的是,在方程px2=qk,p为“隅”,Q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以

q=1/4[c2a2-(c%|2+a2-b2/2)2]

当P=1时,△2=q,

S△=√{1/4[c2a2-(c2+a2-b2/2)2]}

因式分解得

1/16[(c+a)2-b2][b62-(c-a)2]

=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)

=1/8S(c+a+b-2b)(b+c+a-2a)(b+a+c-2c)

=p(p-a)(p-b)(p-c)

由此可得:

S△=√[p(p-a)(p-b)(p-c)]

其中p=1/2(a+b+c)

这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。