您的位置首页百科知识

设A1、A2与B分别是椭圆 E:x2 a2 + y2 b2 =1(a>b>0)的左 右顶点与上定点

设A1、A2与B分别是椭圆 E:x2 a2 + y2 b2 =1(a>b>0)的左 右顶点与上定点

的有关信息介绍如下:

设A1、A2与B分别是椭圆 E:x2 a2 + y2 b2 =1(a>b>0)的左 右顶点与上定点

:(1)证明:∵A1、A2与B分别是椭圆E:x2a2y2b2=1(a>b>0)的左右顶点与上定点,∴A1(-a,0),A2(a,0),B(0,b),∴直线A2B的方程是xayb=1,∵直线A2B与圆C:x2 y2=1相切,∴11a21b2=1,故1a21b2=1.(2)解:设P(x0,y0),则直线PA1,PA2的斜纯枝率之积为:kPA1•kPA2=y0x0 a•y0x0-a=y02x02-a2=-13,x02a23y02a2=1,∵x02a2y02b2=1,∴b2=13a2,结合1a21b2=1,得a2=4,b2=43,∴椭圆E的方程为x243y24=1.(3)解:设点M(x1,y1),N(x2,y2),①若直线l的斜率存在,设直线l为y=kx m,由y=kx m代入x2a2y2b2=1,得x2a2(kx m)2b2=1,化简,得(b2 a2k2)x2 2a2kmx a2m2-a2b2=0(△>0),∴x1x2=a2m2-a2b2b2 a2k2,y1y2=(kx1 m)(kx2 m)=k2x1x2 km(x1 x2) m2=a2k2m2-a2b2k2b2 a2k2km(-2a2kmb2 a2k2) m2=b2m2-a2b2k2b2 a2k2,∵OM•ON=0,∴x1x2 y1y2=0.代入,得(a2 b2)m2-a2b2(1 k2)=0,∵1a21b2=1,∴m2=1 k2,圆心到直线l的距离为d=|m|1 k2=1,所以,直线l与圆C相切.②若直线l的斜率不存在,设直线l:x=n,代入x2a2y2b2=1,得y=±b1-n2a2,∴|n|=b1-n2a2,∴a2n2=b2(a2-n2),解得n=±1,所以直线l与圆C相切.:(1)证明:∵A1、A2与B分别是椭圆E:x2a2y2b2=1(a>b>0)的左右顶点与上定点,∴A1(-a,0),A2(a,0)坦乎,B(0,b),∴直线A2B的方程是xayb=1,∵直线A2B与圆C:x2 y2=1相切,∴11a21b2=1,故1a21b2=1.(2)解:设P(x0,y0),则直线PA1,PA2的斜率之积为:kPA1•kPA2=y0x0 a•y0x0-a=y02x02-a2=-13,x02a23y02a2=1,∵x02a2y02b2=1,∴b2=13a2,结合1a21b2=1,得a2=4,b2=43,∴椭圆E的方程为x243y24=1.(3)解:设点M(x1,y1),N(x2,y2),①若直线l的斜率存在,设直线l为y=kx m,由y=kx m代入x2a2y2b2=1,得x2a2(kx m)2b2=1,化简,得(b2 a2k2)x2 2a2kmx a2m2-a2b2=0(△>0),∴x1x2=a2m2-a2b2b2 a2k2,y1y2=(kx1 m)让裤悉(kx2 m)=k2x1x2 km(x1 x2) m2=a2k2m2-a2b2 k2b2 a2k2km(-2a2kmb2 a2k2) m2=b2m2-a2b2k2b2 a2k2,∵OM•ON=0,∴x1x2 y1y2=0.代入,得(a2 b2)m2-a2b2(1 k2)=0,∵1a21b2=1,∴m2=1 k2,圆心到直线l的距离为d=|m|1 k2=1,所以,直线l与圆C相切.②若直线l的斜率不存在,设直线l:x=n,代入x2a2y2b2=1,得y=±b1-n2a2,∴|n|=b1-n2a2,∴a2n2=b2(a2-n2),解得n=±1,所以直线l与圆C相切