如图,▱$ABCD$中,$E$、$F$在$B$、$D$上,且$BE=AB$,$DF=CD$,连接$AF$、$CE$.
的有关信息介绍如下:$(1)$证明:$\because $四边形$ABCD$是平行四边形,$\therefore AB=CD,AB$∥$CD$,$\therefore \angle ABD=\angle BDC$,$\because BE=AB$,$DF=CD$,$\therefore BE=DF$,$\therefore BF=DE$,$\therefore \triangle ABF$≌$\triangle CDE\left(SAS\right)$,$\therefore \angle AFB=\angle CED$,$\therefore AF$∥$CE$;$(2)$图形中的所有等腰三角形有$\triangle ABF$,$\triangle CDE$,$\triangle AFD$,$\triangle BEC$.设$\angle DBC$为$x$,则$\angle ABD$为$2x$,若$\triangle ADF$为等腰三角形,则有$\angle BAF=\angle DAF=x$,$\therefore \angle BAF=180^{\circ}-4x$,$\because \angle AFB=\angle DAF+\angle BDA=2x$,$\therefore \triangle ABF$为等腰三角形;$\because \angle AFB=\angle CED$,$\therefore \angle AFD=\angle CEB$,在$\triangle AFD$和$\triangle CEB$中$\left\{\begin{array}{l}{∠AFD=∠CEB}\\{∠ADF=∠CBE}\\{AD=CB}\end{array}\right.$,$\therefore \triangle AFD$≌$\triangle CEB\left(AAS\right)$,$\therefore \triangle CEB$为等腰三角形;$\because AF=FD=EB=CE=AB=CD$,$\therefore \triangle ABF$和$\triangle DCE$也是等腰三角形.