Map(最大后验)
的有关信息介绍如下:在贝叶斯统计学中,最大后验(Maximum A Posteriori,MAP)估计可以利用经验数据获得对未观测量的点态估计。它与Fisher的最大似然估计(Maximum Likelihood,ML)方法相近,不同的是它扩充了优化的目标函数,其中融合了预估计量的先验分布信息,所以最大后验估计可以看作是正则化(regularized)的最大似然估计。
想要了解更多“Map(最大后验)”的信息,请点击:Map(最大后验)百科
在贝叶斯统计学中,最大后验(Maximum A Posteriori,MAP)估计可以利用经验数据获得对未观测量的点态估计。它与Fisher的最大似然估计(Maximum Likelihood,ML)方法相近,不同的是它扩充了优化的目标函数,其中融合了预估计量的先验分布信息,所以最大后验估计可以看作是正则化(regularized)的最大似然估计。
想要了解更多“Map(最大后验)”的信息,请点击:Map(最大后验)百科