如图,在平面直角坐标系xOy中.
的有关信息介绍如下:如图,在平面直角坐标系xOy中.
如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.
1)∵|OA|:|OB|=1:5,|OB|=|OC| ∴ 设|OB|=|OC|=5|OA|=5m
∵S△ABC=15
∴(m+5m)×5m=15 ∴m=1 ∴|OB|=|OC|=5 |OA|=1
∵抛物线y=ax2+bx+c(a≠0)经过A、B、C三点 A(-1,0) B(5,0) C(0,-5)
∴a=1 b=-4 c=-5
∴y=x^2-4x-5
2)设E(x,y)因为EF关于x=对称,所以F(4-x,y)
当E在x轴下方时 令...
(1)|OA|:|OB|=1:5,|OB|=|OC|,所以|AB|=6|OA|,|OB|=|OC|=5IOAI,S△ABC=15,
即0.5*IABI*IOCI=0.5*6IOAI*5IOAI=15,IOAI=1,所以点A、B、C的坐标分别为(0,-1)、(5,0)、(0,-3),把它们代入y=ax^2+bx+c中,解得a=1,b=-4,c=-5,所以此抛物线的函数表达式为
这个是标准答案
(1)∵|OA|:|OB|=1:5,|OB|=|OC|,
∴设|OB|=|OC|=5|OA|=5m,
∵S△ABC=15,
∴12(m+5m)×5m=15,
∴m=1,
∴|OB|=|OC|=5,
|OA|=1,
∵抛物线y=ax2+bx+c(a≠0)经过A、B、C三点A(-1,0)B(5,0)C(0,-5),
设二次函数解析式为y=...
(1)|OA|:|OB|=1:5,|OB|=|OC|,所以|AB|=6|OA|,|OB|=|OC|=5IOAI,S△ABC=15,
即0.5*IABI*IOCI=0.5*6IOAI*5IOAI=15,IOAI=1,所以点A、B、C的坐标分别为(0,-1)、(5,0)、(0,-3),把它们代入y=ax^2+bx+c中,解得a=1,b=-4,c=-5,所以此抛物线的函数...
他们这一步解错了吧 直线BC的解析式求得为y=-x-5 即x+y+5=0 直线BC上升不可能a是负的啊! 正确应该是y=x-5 即x-y-5=0
如图、图在何方?
1)∵|OA|:|OB|=1:5,|OB|=|OC| ∴ 设|OB|=|OC|=5|OA|=5m
∵S△ABC=15
∴(m+5m)×5m=15 ∴m=1 ∴|OB|=|OC|=5 |OA|=1
∵抛物线y=ax2+bx+c(a≠0)经过A、B、C三点 A(-1,0) B(5,0) C(0,-5)
∴a=1 b=-4 c=-5
∴y=x^2-4x-5