您的位置首页百科问答

聚类分析法的基本依据?

聚类分析法的基本依据?

的有关信息介绍如下:

聚类分析法的基本依据?

例如,我们可以根据各个银行网点的储蓄量、人力资源状况、营业面积、特色功能、网点级别、所处功能区域等因素情况,将网点分为几个等级,再比较各银行之间不同等级网点数量对比状况。 1、基本思想:我们所研究的样品(网点)或指标(变量)之间存在程度不同的相似性(亲疏关系——以样品间距离衡量)。于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间相似程度的统计量,以这些统计量为划分类型的依据。把一些相似程度较大的样品(或指标)聚合为一类,把另外一些彼此之间相似程度较大的样品(或指标)又聚合为另一类,直到把所有的样品(或指标)聚合完毕,这就是分类的基本思想。 在聚类分析中,通常我们将根据分类对象的不同分为Q型聚类分析和R型聚类分析两大类。 R型聚类分析是对变量进行分类处理,Q型聚类分析是对样本进行分类处理。 R型聚类分析的主要作用是: 1、不但可以了解个别变量之间的关系的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。 2、根据变量的分类结果以及它们之间的关系,可以选择主要变量进行回归分析或Q型聚类分析。 Q型聚类分析的优点是: 1、可以综合利用多个变量的信息对样本进行分类; 2、分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果; 3、聚类分析所得到的结果比传统分类方法更细致、全面、合理。 为了进行聚类分析,首先我们需要定义样品间的距离。 常见的距离有 : ① 绝对值距离 ② 欧氏距离 ③ 明科夫斯基距离 ④ 切比雪夫距离